FROM MARILYN BURNS

Dear Colleague,

Students now take a break from locating products on their Missing Products he the shift to a new exploration: exploring the patterns of multiples of particular factors on the multiplication chart.
Using multiples of 6 as a beginning example, students build successively arg er rectangles with six squares in each row. They write a multiplication larger rectangles with $1 \times 6=6,2 \times 6=12$, and so on-continuing until they equation for identified all the multiples of 6 up to 144 .

students...
-Calculate products with factors 0 through 12.

- Represent arrangements of equal rows and rectangles with multiplication equations.
-Communicate ideas with key math vocabulary: multiplication equation,

Then students color all of the multiples of 60 and examine the visual pattern that emerges.

Students repeat this exploration for multiples of other numb and compare the patterns. In our experience, these patterns, which somewhat resemble checks and plaids, delight students, the patterns curiosity, and motivate them to think about how patterns and numbers connect
These lessons stress
their number sense, students understanding of multiplication, foster multiplication chart. Also included in the familiarity with the products on the which provides students practice win the lessons is the game of Pathways,

$$
\begin{aligned}
& \text { Pathways Game Board © } \\
& \begin{array}{|c|c|c|c|c|}
\hline & 32 & 24 & 15 & 48 \\
\hline 28 & 40 & 35 & 64 & 20 \\
\hline 30 & 12 & 56 & & 16 \\
\hline 9 & 25 & 49 & 42 & 36 \\
\hline
\end{array} \\
& \hline \text { 3 }
\end{aligned} 4
$$

66 These lessons

 strengthen students understanding of multiplication, foster their number sense, and help build their familiarity with the products on the multiplication chart. 99

LESSON 13 Learning Pa
$\begin{array}{l}\text { Lesson Summary } \\ \text { Students learn how to play a game called } \\ \text { Pathways that provides practice with } \\ \text { multiplying the factors } 3,4,5,6,7, \text { and } 8 .\end{array}$
$\begin{array}{l}\text { Objectives } \\ \text { - Calculate products with factors } 0 \text { through } 12 . \\ \text { - Communicate ideas with key math vocabulary: }\end{array}$

Materials

- WorkSpace pages 36 and 37
- tiles ©
- dry erase markers ©
© $=$ Games Bag

Key Math Vocabulary	
english	sPanish
factor	factor
product	producto
Academic Vocabulary	
encush	span
equation	ecuación
game	juego
Cognates are shown in italics; pointing out the similarity of these words to their English equivalents will help your Spanish-speaking students acquire math vocabulary.	

Oniul WHOLE GROUP
STEP $\begin{aligned} & \text { Teach a multiplication } \\ & \text { game. }\end{aligned}$ game.
(1) Introduce the lesson.

Today, you'll learn a game called Pathways that will give Today, you'll learn a game cal
you practice with multiplying.
(2) Explain how to play Pathways. There are two players in a game. The goal is to be the first
player to complete a continuous pathway across the game player to complete a continuous pathway across the game
board. Each square is a stepping-stone, and each player usard. Each square is a stepping-stone, and
Place a game board on a flat surface where everyone can view it.
The numbers inside the rectangle are products, and the numbers beneath the rectangle are factors.
Use a dry erase marker to circle the factors 3 and 6
I marked these numbers because I want to multiply the Write on the board

\bigcirc If my partner agrees that 18 is the product, I Ilace a green tile on the 18 on the game board. Then we each write the equation on our recording sheets.

Identify Patterns on the Multiplication Chart

3 Demonstrate a partner's turn.
Now it's my partner's turn. He or she can erase the mark from one factor and mark another factor Let's suppose that my partner changes the 6 to
Erase the mark from the 6, and mark the 7 .
Now the marked factors are 3 and 7 . What is the
product of 3 times 7 ? (21) product of 3 times 7? (21)
I agree that 21 is correct. So my partner will put a
yellow tile on the 21 and then we will each wite yellow tile on the 21, and then we will each write

Place a yellow tile on 21 .
Write $3 \times 7=21$ on the board.

Pathways Game Board $(\mathbb{A}$					
\square	32	24	15	48	
28	40	35	64	20	
30	12	56		16	
9	25	49	42	36	
(3)	4	5	6	7	8

You and your partner take turns changing one product. The first player to make a path from on product. he first player o mane a path from
side of the board to the other is the winner.
Tell students that it is okay to mark a single facto twice. For example, when you showed changing 6 to 7 , you could instead have changed 6 to 3 , so th
factors would be 3 and 3 .

4 Demonstrate ways to complete a pathway.
Let's look at some ways that you can make a path across the board. You can make a path from top
to bottom to bottom or from side to side. Any squares that
share a side or corner connect to form a path. Take a handful of yellow markers and place them in a variety of configurations that make a continuous path. Remind students that a pathway
includes squares that share sides or corners. Move your finger along the paths to show that they are continuous.
Point out that students do not have to choose products so that the tiles they place form a continuous path. They can place tiles in any
squares on the board and connect them later squares on the board and connect them later in
the game.

| 28 | 40 | 6420 |
| :--- | :--- | :--- | :--- |

| $30 \quad 12$ |
| :--- | :--- |

$\begin{array}{ll}9 & 254942\end{array}$

| 9 | 25 | 49 | 42 | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 4 | 5 | 6 | 7 | 8 |

Pathway Game Board (1)

18	32	24	15

- \square^{35} ■

| 30 | 12 |
| :--- | :--- | :--- | :--- | 2116

| 9 | 25 | 49 | 42 | 36 |
| :--- | :--- | :--- | :--- | :--- | :--- |

345678
${ }^{3} 4{ }^{5}$

$$
\begin{array}{|l|l|l|l|}
\hline 18 & 32 & 24 & 15 \\
\hline 28 & 48 \\
\hline 28 & 40 & 35 & 64 \\
\hline & 12 & 56 & 20 \\
\hline 9 & \square & & 21 \\
\hline
\end{array}
$$

Sample pathways

28	40	35	64	20
30	12	56	21	

9	25	49	42	36

(3) 45 (6) 78

Play the game with the whole group.
(1) Explain a practice turn.

Now we'll play a few practice turns. We'll play on the game board, mark the factors we pick, and place tiles on the products.
(2) Take a practice turn.

I'll go first. I choose 3 and 5 as my factors.
Circle the 3 and the 5
I think the product of 3 and 5 is 15. Am I right? roduct is correct of youk need to your partner's your multiplication chart.
I'll place a green tile on 15
Write $3 \times 5=15$ on the board, and have students write the equation on WorkSpace page 36.

Teacher $3 \times 5=15$	Partner

\section*{Pathways Game Board (A)
 | 18 | 32 | 24 | |
| :--- | :--- | :--- | :--- |
| 28 | 40 | 35 | 64 |
 | 30 | 12 | 56 | 21 | 16 |
| :---: | :---: | :---: | :---: | :---: |
| 9 | 25 | 49 | 42 | 36 |
 (3) 4 (5) 678}

(3) Students take a practice turn Now it's your turn. For this practice game, just lll me which factor you wan to change and Ill Choose a student to select the new factor. Play two or three more practice turns, choosing
a different student to select the new factor for a different student to select the new factor for
each students' turn. Write each equation on the board, and have students record the equations on WorkSpace page 36. On one of your turns, if the product is available, mark the same factor twit
to remind students that this is an option.
WORKSPACE PAGE 36

SUPPORTING INSTRUCTION Students may have some difficulty keeping the tiles on the correct products on the game board while they are playing. You may suggest that they mark the board with X S and os (as in tic-tac-toe) instead of the desk is jarred or a tile is accidentally nudged.

HOW TO PLAY Multiplication Game

Pathways

what you need

- Pathways Game Board, tiles, dry erase marker
 Player B marks one new factor, and places a yellow tile on the product. Player A checks the product, and both players write the equation.
> The winner is the first player to complet a path from top to bottom or from side to side of the game board

SUPPORTING INSTRUCTION As students play, check that they understand how to
make a complete path. Remind them that they can go from leff to right or from right to leff, from top to bottom or from bottom to top, or skip around and connect the path later in the game.
(2) Partners play again.

If there is enough time, have students play another
game of Pathways, recording on blank paper.

SUPPORTING INSTRUCTION

(1) Partners play a game of Pathways. Distribute Game Board A, tiles, and a marker to each pair of students.
Have students play the game and record their equations on WorkSpace page 37 as they play.
(penu!łuo૭) \& L UOSSӨ7 There are five different Pathways game boards. The greater the factors, the higher the level of difficiculty, Select easier boards for students' first games. As
you progress through the module, select boards with you progress throug tive tudents practice with more difficult multiplication facts.

Show What You Know

68 Id
dentify Patterns on the Multiplication Chart

Multiplication B: Facts through 12×12 Reduced Annotated WorkSpace, page 44

